

1 **Thermoluminescence and Radioluminescence of alexandrite mineral**

2 Neilo Marcos Trindade^{*1,2}, Marcela Rodrigues da Cruz³, Henrique Kahn⁴,
3 Luiz Gustavo Jacobsohn², Elisabeth Mateus Yoshimura³.

4

5 ¹ Department of Physics, Federal Institute of Education, Science and Technology of São
6 Paulo - IFSP, São Paulo, SP, Brazil.

7 ² Department of Materials Science and Engineering, Clemson University, Clemson, SC,
8 USA.

9 ³ Institute of Physics, University of São Paulo - USP, São Paulo, SP, Brazil.

10 ⁴ Polytechnic School, University of São Paulo - USP, São Paulo, SP, Brazil

11 *ntrindade@ifsp.edu.br (N. M. Trindade); marcela.rodrigues.cruz@usp.br (M. R. Cruz);
12 henrique@lct.poli.usp.br (H. Kahn); luiz@clemson.edu (L. G. Jacobsohn);
13 e.yoshimura@if.usp.br (E. M. Yoshimura).

14

15

16

17

18

19

20

21

22

23

24

25

26 **ABSTRACT**

27 The thermoluminescence (TL) of natural alexandrite (BeAl_2O_4) was investigated using
28 different methods, namely T_m - T_{stop} , T_m as a function of beta irradiation dose, glow curve
29 best fitting, variable heating rate, and TL fading as a function of time after irradiation, in
30 addition to radioluminescence (RL) measurements under X-ray excitation as a function
31 of the temperature. The chemical composition and the concentration of secondary
32 mineral phases were determined by scanning electron microscopy and Energy-
33 dispersive X-ray spectroscopy. TL measurements with heating rate = 1 K/s revealed five
34 individual TL peaks at about 355 (peak I), 405 (peak II), 435 (peak III), 530 (peak IV),
35 and 580 K (peak V). The activation energy E and the frequency factor s associated with
36 each of them were determined by different methods. Within irradiation doses from 1 to
37 10 Gy, analysis of the T_m position indicated that all glow peaks exhibited a first-order
38 kinetics TL mechanism. TL fading at room temperature was 15% for peak IV and 5%
39 for peak V within 2 days after irradiation. RL measurements revealed luminescence
40 centers attributed to Cr^{3+} , Mn^{4+} and Fe^{3+} impurities. Overall, the results suggest that
41 natural alexandrite has a potential use in dosimetry.

42

43 **Keywords:** alexandrite, thermoluminescence, glow curve, natural dosimeter.

44

45

46

47

48

49

50

51 **1. INTRODUCTION**

52 Alexandrite is a green variety of chrysoberyl with the incorporation of chromium
53 in its lattice [1, 2]. Chrysoberyl is one of the most interesting minerals with wide
54 application in lasers being widely used for medical purposes, since it exhibits higher
55 performance of the laser than other materials[3]. Chrysoberyl (BeAl_2O_4) has
56 orthorhombic symmetry (*Pmna*) that corresponds to a hexagonal-close-packed in which
57 the position of the oxygen atoms is slightly distorted [4]. These distortions give rise to
58 two crystallographic sites with different symmetries: the site Al_1 corresponds to an
59 inversion center (*Ci* symmetry), and the site Al_2 is located in a reflection plane (*Cs*
60 symmetry) [5-7]. Chromium (Cr^{3+}) and Iron (Fe^{3+}) as impurities are often responsible
61 for the optical properties of this mineral [3]. When doped, the Cr^{3+} ions preferably
62 replace about 75% on the site Al_2 and 25% on the Al_1 site [2, 8-12]. When with the
63 presence of iron, Fe^{3+} substitutes in different Al^{2+} octahedral sites with the proportion of
64 60% on the Al_1 and 40% on Al_2 site [3].

65 Noteworthy, Brazil is one of the largest world producers of alexandrite and in
66 spite of belonging to a family of gems with economic and technological interest [13],
67 there are few studies on the applications of natural alexandrite. Furthermore, the fact
68 that chrysoberyl contains around of 20 wt.% BeO and 80 wt.% Al_2O_3 [6], and that both
69 of these oxides are commercially used as dosimeters [14, 15], suggested the
70 investigation of alexandrite as a natural dosimeter [16], through the use of
71 thermoluminescence technique.

72 Thermoluminescence (TL) is the light emitted by some materials upon heating
73 after exposure to ionizing radiation, besides incandescence. It is a thermally stimulated
74 emission originated in the release of charge carriers from traps and their recombination
75 at luminescence centers [17, 18]. Among the thermoluminescent materials, some natural

76 minerals can be used for TL dosimetry [19], nuclear accident dosimetry [20], food
77 irradiation control [21], and luminescence dating [22]. Among them, quartz [23-26],
78 calcite [27, 28] and feldspar [22, 29] are well-known thermoluminescent minerals, and
79 recently we showed that the mineral alexandrite has potential for use in dosimetry [16].
80 In addition, to complement TL experimental technique, Radioluminescence (RL) is
81 used as an important tool for studying luminescence mechanisms. RL is the
82 luminescence emitted by a material under exposure to ionizing radiation. This technique
83 provides emission energy information as a function of sample temperature, which in
84 general are related to impurities or dopants in the material [30]. To the best of our
85 knowledge, there is only one report on the investigation of the effects of ionizing
86 radiation on synthetic alexandrite [31], two reports on the TL response of natural
87 alexandrite and chrysoberyl [16, 32] and we have no notice about any work of
88 radioluminescence measures in alexandrite.

89 The objectives of this work were the investigation of the TL behavior and of the
90 recombination centers by means of RL measurements of alexandrite. In this work,
91 kinetic behavior of the TL glow peaks of alexandrite through the determination of the
92 activation energy, E , and frequency factor, s , of each TL peak as well as RL results are
93 reported for the first time.

94

95 2. MATERIALS AND METHODS

96 Two samples were extracted from the same rock of natural alexandrite
97 originated from the State of Bahia, Brazil. Both samples were sliced with parallel faces,
98 thickness of 1.0 mm, and masses of 0.059 ± 0.001 g (sample I) and 0.045 ± 0.001 g
99 (sample II). During sample handling, sample I broke into several fragments (Fig. 1a).

100 Chemical analysis and imaging were carried out by means of scanning electron
101 microscopy (SEM)/electron dispersive X-ray spectroscopy (EDS) measurements on all
102 fragments of sample I (Fig. 1b). The fragments were mounted onto a 30 mm diameter
103 epoxy resin block (Epofix–Struers) and polished with diamond. For these
104 measurements, a LEO Stereoscan 440 scanning electron microscope operated at an
105 accelerating voltage of 20 kV and equipped with an Oxford x-act EDS spectrometer was
106 used. Backscattered electron (BSE) imaging was used to complement EDS chemical
107 characterization. Standards from Smithsonian Institute and Micro-Analysis Cons. Ltd.
108 were used in the EDS analysis. As Be concentration is not possible to evaluate by EDS,
109 we assumed the presence of this element in a concentration corresponding to BeO in the
110 sample, completing the set of oxides (Al_2O_3 , Cr_2O_3 and Fe_2O_3) in the matrix,
111 stoichiometrically. Chemical compositions of allanite, apatite and fluorite were also
112 fine-tuned according to the atomic proportions of the bearing elements which is not
113 possible to do in relation to micas due the presence of light elements not analyzed by
114 EDS.

115 TL measurements were executed on sample I. For these measurements, the
116 sample was heated at 20 K/min up to 773 K in a muffle furnace and kept at this
117 temperature for 1h to empty the traps and erase the effects of previous irradiations. The
118 sample was then cooled at 20 K/min up to room temperature. TL measurements were
119 carried out using a commercial automated TL/OSL reader fabricated by Risø National
120 Laboratory (model DA-20). TL glow curves were obtained using a heating rate of 1 K/s,
121 from room temperature to 723 K. The TL signal was detected with a bialkali
122 photomultiplier tube behind an UV transmitting filter (Hoya U-340, 7.5 mm thick) and a
123 5 mm dia. mask. Irradiations were performed at room temperature using the built-in
124 $^{90}\text{Sr}/^{90}\text{Y}$ beta source of the TL/OSL reader (dose rate of 10 mGy/s).

125 The analysis of the glow curves and the extraction of the kinetic parameters
126 involved several methods, including T_m - T_{stop} , T_m as a function of irradiation dose (dose
127 range from 1 to 10 Gy), variable heating rate (β from 0.4 to 5 K/s), and glow curve
128 fitting. These methods have been established and discussed in [17, 33, 34]. The
129 protocol used for the T_m - T_{stop} method was as follows:

- 130 1. Irradiation of the sample up to 1 Gy
- 131 2. Sample heating at a constant rate ($\beta = 1$ K/s) up to a T_{stop} temperature
- 132 3. Sample cooling down to room temperature
- 133 4. Acquisition of a full TL glow curve, from RT to 668 K, and determination
134 of the temperature, T_m , of the peak that was closest to T_{stop}

135 This sequence was repeated several times, increasing T_{stop} by 5 K from 333 K up to 668
136 K, thus completing the whole TL curve. Glow curve analysis used the GlowFit software
137 [35] that is based on the first-order kinetics model by Randall-Wilkins [36]. Further, an
138 investigation of the immediate fading of the TL signal was conducted with the sample
139 beta-irradiated and stored in the dark at room temperature for various times up to 48 h
140 before the TL readout.

141 RL measurements were executed on sample II using a customer-designed Freiberg
142 Instruments Lexsyg Research spectrofluorometer equipped with a Varian Medical
143 Systems VF-50J X-ray tube with a tungsten target and coupled with an ionization
144 chamber for dose monitoring. The light emitted by the sample was collected by a lens
145 and converged into an optical fiber connected to an Andor Technology Shamrock 163
146 spectrograph coupled to an Andor Technology DU920P-BU Newton CCD camera.
147 Results were not corrected for the spectral sensitivity of the system. RL measurements
148 were executed under continuous X-ray irradiation (40 kV and 1 mA) from RT up to 673
149 K with a heating rate of 1 K/s and 1 s integration time. The measurements were done in

150 steps of 50 K, keeping the sample at the chosen temperature for 5 s before beginning the
151 data collection to guarantee thermal stability.

152

153 **3. RESULTS AND DISCUSSION**

154 Fig. 1a illustrates the visual aspect of the fragments of sample I where the presence of
155 different mineral phases can be seen. Fig. 1b shows a typical BSE image of the same
156 fragments. The differences between the many shades of grey revealed variations of the
157 chemical composition and confirmed the existence of several mineral phases, as detailed
158 in the legend (upper part of Fig. 1b). The presence of various mineral phases is expected
159 in a natural sample. Figs. 1c and 1d show BSE images of the fragment with the highest
160 fraction of alexandrite at different magnifications illustrating the natural distribution of
161 the mineral phases within the fragment. The proportion of the mineral phases among all
162 the fragments was determined by image analyze considering phase contrast on
163 backscattered electron (BSE) image and chemical compositions by EDS analysis; area
164 proportions were converted to weight considering average mineral specific gravity to be
165 62 wt.% alexandrite, 22 wt.% apatite – calcium phosphate, 13 wt.% mica, 3 wt.%
166 calcium aluminosilicate with rare earths – allanite, and traces of fluorite.

167 The determination of the chemical composition was important in order to
168 understand the luminescent behavior and to allow for future correlation between these
169 results and results from other minerals. Table I shows the average weight percentages of
170 the binary oxides and halides that compose each mineral phase of all the fragments of
171 sample I. The determination of the presence of Cr and Fe in alexandrite is important
172 because it influences the optical and electrical properties related of the material [37, 38].

173 Figure 2 shows a typical glow curve of alexandrite measured at 1 K/s after
174 irradiation up to 1 Gy. Five peaks labeled I (~355 K), II (~405 K), III (~435K), IV

175 (~530 K), and V (~580 K) were observed. The nature of these peaks was investigated by
176 the T_m - T_{stop} method. The constancy of T_m with the increase of T_{stop} is expected for a
177 first-order kinetics TL peak, while a shift toward higher temperatures characterizes a
178 non-first order kinetics TL peak [17, 39]. Accordingly, Fig. 3 shows that peaks I, II, IV
179 and V present first-order kinetics. On the other hand, the results for peak III presented a
180 higher level of uncertainty because of its weaker relative intensity combined with its
181 proximity to peaks II and IV and no clear conclusion could be drawn. The nature of this
182 TL peak is further discussed below.

183 The analysis of T_m as a function of the irradiation dose was also executed. For a
184 first-order kinetics TL peak, the peak position is not expected to change as a function of
185 the irradiation dose [17, 39]. Fig. 4 shows the glow curves obtained for different
186 irradiation doses, from 1 to 10 Gy, while the inset shows the T_m values extracted
187 directly from the glow curve and through the use of the GlowFit software. Both T_m
188 analyzes (Fig. 4, inset) showed essentially the same behavior in which the peak
189 positions were independent of the dose, including peak III, thus corroborating and
190 expanding the T_m - T_{stop} results in that all the TL peaks presented a first-order kinetics TL
191 mechanism. Fig. 5 shows the best fitting obtained with GlowFit (continuous green lines)
192 of the experimental glow curves (continuous black lines). For each glow curve, five TL
193 peaks (dashed red lines) were considered as per the results obtained with the T_m - T_{stop}
194 analysis and the figure of merit (FOM) describing the quality of the fitting is given for
195 each plot. All fittings had a FOM below 5%, and non-biased residuals, demonstrating
196 the good quality of the fitting.

197 GlowFit also yielded the peak intensity, integral area, trap depth energy E , and
198 frequency factor s of each fitted peak. The dose response curves based on the peak
199 intensity and area values are shown in Fig. 6. The dose response curves of all five peaks

200 showed a linear increase with dose. In addition, Fig. 7 shows the E values as a function
201 of the irradiation dose for each peak. Besides peak I, all other peaks yielded an
202 essentially constant E value for all irradiation doses. The behavior of peak I that is
203 centered at 355 K ($\beta = 1$ K/s) is tentatively explained by some difficulty of the *Glow Fit*
204 software in dealing with two low-intensity peaks with so close E values, as are peaks I
205 and II. Nevertheless, the average E values and the s values together with their respective
206 standard deviations for both methods are presented in Table II.

207 The E and s values were also obtained using the variable heating rate method
208 [17, 18, 33]. Fig. 8 shows the glow curves obtained at various heating rates where a
209 shift of T_m toward higher values for faster heating rates was observed. The behavior of
210 peaks IV and V at the higher heating rates points to a possible thermal quenching effect,
211 as the peak intensities have a marked decrease compared to the rest of the glow curve.

212 According to the equation $\frac{\beta \cdot E}{k \cdot T_m^2} = s \exp\{-E/kT_m\}$ [17], the plot of $\ln(T_m^2/\beta)$ against
213 $1/kT_m$ (k = Boltzmann constant) shown in Fig. 9 revealed a straight line for each of the
214 five peaks. The E and s were extracted from the slope of the lines and the intercept with
215 the ordinate axis. These results are also shown in Table II. Overall, both analyzes
216 yielded compatible E and s values with a general trend of finding larger differences
217 among the values determined by the different methods for the high-temperature glow
218 peaks, particularly peaks III and V.

219 Figure 10 presents a series of glow curves obtained after different times
220 posterior to irradiation, up to 48 hrs. It is clear that peak I was unstable at room
221 temperature, as already reported by the authors in [16]. The intensity of peak I
222 continuously decreased for longer times after irradiation and was nearly extinguished
223 after 1 hr. Further analysis of the TL signal fading was carried out by means of best
224 fitting analysis using the *GlowFit* software. All the glow curves were fitted using the

225 same fixed set of values of E and s for each peak according to initial value at $t = 0$ s. Fig.
226 11 shows the peak intensity and area of each peak as a function of the time after
227 irradiation normalized to the respective intensities from the glow curve obtained after
228 irradiation. 48 hrs post irradiation, the area of each peak was reduced (fading) by about
229 95% (peak I), 50% (peak II), 15% (peak III), 15% (peak IV), and 5% (peak V) of the
230 initial value. This 5% of variation of peak V area could be an overestimation of the
231 fading, as there might be contributions of fluctuations of the light detection efficiency of
232 the TL equipment (typical values of 2% are expected), and of uncertainties of the glow-
233 fitting method. The high stability of the TL signal to the higher temperature peaks over
234 time suggests its potential use in the field of dosimetry. A further study with longer
235 times after irradiation and a rigid control of the light detection efficiency could
236 complement these findings.

237 In order for thermoluminescence to occur, it is necessary for a material to
238 contain at least one trap and one recombination center. After the investigation of the
239 traps through TL measurements presented above, we now focus on the investigation of
240 the recombination centers by means of RL measurements. To the best of our
241 knowledge, this is the first time that RL analysis of alexandrite was performed, with the
242 RL spectra obtained as a function of the temperature being presented in Fig. 12. The RL
243 spectrum obtained at room temperature is similar to the photoluminescence spectrum
244 reported earlier [8], being composed by a narrow band centered at 1.82 eV
245 superimposed to a broad band ranging from about 1.65 to 1.90 eV and centered at about
246 1.76 eV. The narrow band was assigned to the forbidden $^2E \rightarrow ^4A_2$ transition of Cr^{3+}
247 located in Al_2 sites [13, 16, 40-42]. The broad emission can be attributed to
248 magnetically coupled Cr^{3+} - Cr^{3+} pairs and clusters, besides Fe^{3+} and Mn^{4+} impurities,
249 commonly present in natural minerals [2, 43-47]. No additional emission was observed

250 at higher energies, as shown in the inset of Fig. 12. The evolution of the RL spectra as a
251 function of temperature yielded insight into the thermal quenching of the luminescence
252 centers. Both bands decreased in intensity and shifted to lower energies with increasing
253 temperature. It is expected to reduce the emission of the R-lines due to competition
254 between phonons and photons from the excited vibronic states [48]. This is mainly due
255 to the decrease in fluorescence life being stronger than increase in the effective cross
256 section of the emission at increased temperatures [49]. Thermal quenching of these
257 bands was further investigated by means of the following procedure: RL spectrum
258 integration from 1.65 to 1.90 eV, visual determination of a baseline for the narrow band
259 to compensate for its superposition onto the broad band, and subtraction of the area of
260 the narrow band from the total area obtained previously. This way, the behavior of the
261 integral intensity of each of the two bands was determined as a function of the
262 temperature as shown in Fig. 13. These results revealed that the total RL integrated
263 intensity decreased linearly with the temperature, while thermal quenching occurred at
264 different rates for each band. Importantly, the Cr³⁺ in Al₂ sites is essentially thermally
265 quenched around 475 K. Above this temperature, RL emission is dominated possibly by
266 Cr³⁺ - Cr³⁺ pairs and clusters, Fe³⁺ and Mn⁴⁺ centers suggesting that the recombination
267 center of TL peaks IV and V is predominantly related to these centers.

268

269 CONCLUSIONS

270 To the best of our knowledge, this is the first in-depth investigation of TL and
271 RL of natural alexandrite. As expected, in addition to the main mineral phase
272 alexandrite, the sample presented other mineral phases. More importantly, it also
273 presented Cr³⁺ and Fe³⁺ as impurities. The T_m - T_{stop} analysis confirmed the presence of
274 five peaks at 355, 405, 435, 530 and 580 K ($\beta = 1$ K/s) that, together with the analysis

275 based on the T_m as a function of dose method, were all demonstrated to exhibit a first-
276 order kinetics TL mechanism. Also, we showed that the TL signal of all the peaks
277 varied linearly with the beta irradiation dose from 1 to 10 Gy. The TL fading analysis
278 showed that peak I is unstable at room temperature, and that the more intense peaks IV
279 and V suffered a small reduction within two days after irradiation at room temperature.
280 The values of the trap depth energy E and frequency factor s of all five TL peaks were
281 determined by a combination of methods, variable heating rate and glow curve fitting,
282 with both analyzes yielding compatible results. RL measurements as a function of the
283 temperature revealed the presence of two recombination centers related to Cr^{3+} , Mn^{4+}
284 and Fe^{3+} ions. In summary, based on the results above, alexandrite has shown to be a
285 promising mineral for dosimetry, especially at high irradiation doses.

286

287 **ACKNOWLEDGMENTS**

288 N.M. Trindade received funding from the São Paulo Research Foundation (FAPESP),
289 Grant #2017/11663-1. The authors are grateful to Nacional Council for Scientific and
290 Technological Development (CNPq - Brazil), Grant #307375/2015-3. This material is
291 based upon work supported by the National Science Foundation under Grant #1653016.

292

293 **REFERENCES**

294 [1] M. Rossi, M. Dell'Aglio, A. De Giacomo, R. Gaudioso, G.S. Senesi, O. De Pascale,
295 F. Capitelli, F. Nestola, M.R. Ghiara, Multi-methodological investigation of kunzite,
296 hiddenite, alexandrite, elbaite and topaz, based on laser-induced breakdown
297 spectroscopy and conventional analytical techniques for supporting mineralogical
298 characterization, *Physics and Chemistry of Minerals*, 41 (2014) 127-140.

299 [2] M. Gafta, R. Reisfeld, G. Panckzer, *Modern Luminescence Spectroscopy of*
300 *Minerals and Materials*, Springer Berlin, Heidelberg, New York, 2005.

301 [3] K. Kanchiang, A. Bootchanont, J. Witthayarat, S. Pramchu, P. Thanasuthipitak, R.
302 Yimnirun, X-ray absorption spectroscopy and density functional analysis of the Fe³⁺
303 distribution profile on Al sites in a chrysoberyl crystal, BeAl₂O₄:Fe³⁺, *Journal of*
304 *Applied Crystallography*, 49 (2016) 385-388.

305 [4] E.F. Farrel, J.H. Fang, H.P. Newhan, Refinement of the Chrysoberyl Structure.,
306 *American Mineralogist*, 48 (1963) 804-810.

307 [5] M.K. Rabadanov, A.P. Dudka, Comparative Structural Study of Al₂BeO₄ and
308 Al₂BeO₄:Cr³⁺., *Inorganic Materials*, 33 (1997) 48-51.

309 [6] V.Y. Ivanov, V.A. Pustovarov, E.S. Shlygin, A.V. Korotaev, A.V. Kruzhakov,
310 Electronic excitations in BeAl₂O₄, Be₂SiO₄, and Be₃Al₂Si₆O₁₈ crystals, *Physics of*
311 *the Solid State*, 47 (2005) 466-473.

312 [7] R.M.F. Scalvi, M.S. Li, L.V.A. Scalvi, Thermal annealing-induced electric dipole
313 relaxation in natural alexandrite, *Physics and Chemistry of Minerals*, 31 (2005) 733-
314 737.

315 [8] K.L. Schepler, Fluorescence of inversion site Cr³⁺ ions in alexandrite, *Journal of*
316 *Applied Physics*, 56 (1984) 1314-1318.

317 [9] R.M.F. Scalvi, L. de Oliveira Ruggiero, M. Siu Li, Influence of annealing on X-ray
318 diffraction of natural alexandrite, *Powder Diffraction*, 17 (2002) 135-138.

319 [10] S.-U. Weber, M. Grodzicki, W. Lottermoser, G.J. Redhammer, G. Tippelt, J.
320 Ponahlo, G. Amthauer, 57Fe Mössbauer spectroscopy, X-ray single-crystal
321 diffractometry, and electronic structure calculations on natural alexandrite, *Physics and*
322 *Chemistry of Minerals*, 34 (2007) 507-515.

323 [11] D.A. Vinnik, D.A. Zherebtsov, S.A. Archugov, M. Bischoff, R. Niewa, Crystal
324 Growth and Characterization of Alexandrite, *Crystal Growth & Design*, 12 (2012)
325 3954-3956.

326 [12] B.K. Sevast'yanov, Excited-state absorption spectroscopy of crystals doped with
327 Cr³⁺, Ti³⁺, and Nd³⁺ ions. Review, *Crystallography Reports*, 48 (2003) 989-1011.

328 [13] N. Ollier, Y. Fuchs, O. Cavani, A.H. Horn, S. Rossano, Influence of impurities on
329 Cr³⁺ luminescence properties in Brazilian emerald and alexandrite, *European Journal of*
330 *Mineralogy*, 27 (2015) 783-792.

331 [14] D.P. Groppo, L.V.E. Caldas, Luminescent response from BeO exposed to alpha,
332 beta and X radiations, *Radiation Measurements*, 71 (2014) 81-85.

333 [15] E.G. Yukihara, S.W.S. McKeever, *Optically Stimulated Luminescence: Fundamentals and Applications*, UK: John Wiley and Sons, West Sussex, 2011.

335 [16] N.M. Trindade, H. Kahn, E.M. Yoshimura, Thermoluminescence of natural
336 BeAl₂O₄:Cr³⁺ Brazilian mineral: Preliminary studies, *Journal of Luminescence*, 195
337 (2018) 356-361.

338 [17] S.W.S. McKeever, *Thermoluminescence of Solids*, Cambridge University Press,
339 Cambridge, 1985.

340 [18] J.M. Kalita, G. Wary, *Thermoluminescence properties of minerals and their application*, LAP LAMBERT Academic Publishing, Saarbrucken, Germany, 2016.

342 [19] A. Chruścińska, A. Szramowski, Thermally modulated optically stimulated
343 luminescence (TM-OSL) of quartz, *Journal of Luminescence*, 195 (2018) 435-440.

344 [20] I.K. Bailiff, V.F. Stepanenko, H.Y. Goksu, L. Bøtter-Jensen, L. Brodski, V.
345 Chumak, V. Correcher, A. Delgado, V. Golikov, H. Jungner, L.G. Khamidova, T.V.
346 Kolizshenkov, I. Likhtarev, R. Meckbach, S.A. Petrov, S. Sholom, Comparison of
347 retrospective luminescence dosimetry with computational modeling in two highly
348 contaminated settlements downwind of the Chernobyl NPP, *Health Physics*, 86 (2004)
349 25-41.

350 [21] P. Beneitez, V. Correcher, A. Millán, T. Calderon, Thermoluminescence analysis
351 for testing the irradiation of spices, *Journal of Radioanalytical and Nuclear Chemistry*,
352 185 (1994) 401-410.

353 [22] V. Correcher, J. Garcia-Guinea, L. Sanchez-Muñoz, T. Rivera, Luminescence
354 characterization of a sodium-rich feldspar, *Radiation Effects & Defects in Solids*, 162
355 (2007) 709-714.

356 [23] R. Kibar, J. Garcia-Guinea, A. Çetin, S. Selvi, T. Karal, N. Can, Luminescent,
357 optical and color properties of natural rose quartz, *Radiation Measurements*, 42 (2007)
358 1610-1617.

359 [24] F. Preusser, M.L. Chithambo, T. Götte, M. Martini, K. Ramseyer, E.J. Sendezera,
360 G.J. Susino, A.G. Wintle, Quartz as a natural luminescence dosimeter, *Earth-Science
361 Reviews*, 97 (2009) 184-214.

362 [25] F.O. Ogundare, M.L. Chithambo, Thermoluminescence kinetic analysis of quartz
363 with a glow peak that shifts in an unusual manner with irradiation dose, *Journal of
364 Physics D: Applied Physics*, 40 (2007) 247-253.

365 [26] W.F. Hornyak, R. Chen, A. Franklin, Thermoluminescence characteristics of the
366 375 °C electron trap in quartz, *Physical Review B*, 46 (1992) 8036-8049.

367 [27] J.F. de Lima, M.E.G. Valerio, E. Okuno, Thermally assisted tunneling: An
368 alternative model for the thermoluminescence process in calcite, *Physical Review B*, 64
369 (2001) 014105.

370 [28] Y.A. Abdel-Razek, Thermoluminescence dosimetry using natural calcite, Journal
371 of Taibah University for Science, 10 (2016) 286-295.

372 [29] A. Pandya, S.G. Vaijapurkar, P.K. Bhatnagar, Radiation dosimetry by potassium
373 feldspar, Bulletin of Materials Science, 23 (2000) 155-158.

374 [30] V. Pagonis, M.L. Chithambo, R. Chen, A. Chruścińska, M. Fasoli, S.H. Li, M.
375 Martini, K. Ramseyer, Thermal dependence of luminescence lifetimes and
376 radioluminescence in quartz, Journal of Luminescence, 145 (2014) 38-48.

377 [31] P.N. Yaravoi, V.Y. Medvedev, G.V. Bukin, L.A. Ivanova, A.A. Mikhalenko,
378 Radiative Creation of Color Centers in Alexandrite Crystals, Opt. Spectrosc., 71 (1991)
379 447-449.

380 [32] G. M. Ferraz, S. Watanabe, S. O. Souza, R. M. F. Scalvi, TL, EPR and Optical
381 Absorption Studies on Natural Alexandrite Compared to Natural Chrysoberyl,
382 Radiation Protection Dosimetry, 100 (2002) 471-474.

383 [33] V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in
384 Thermoluminescence, 1 ed., Springer-Verlag New York, 2006.

385 [34] C. Furetta, Handbook of Thermoluminescence, World Scientific, 2003.

386 [35] M. Puchalska, P. Bilski, GlowFit—a new tool for thermoluminescence glow-curve
387 deconvolution, Radiation Measurements, 41 (2006) 659-664.

388 [36] J.T. Randall, M.H.F. Wilkins, Phosphorescence and electron traps - I. The study of
389 trap distributions, Proceedings of the Royal Society of London. Series A. Mathematical
390 and Physical Sciences, 184 (1945) 365-389.

391 [37] N.M. Trindade, R.M.F. Scalvi, L.V.d.A. Scalvi, Cr³⁺ Distribution in A11 and A12
392 Sites of Alexandrite (BeAl₂O₄: Cr³⁺) Induced by Annealing, Investigated by Optical
393 Spectroscopy, Energy and Power Engineering, 2 (2010) 18-24.

394 [38] N.M. Trindade, A.R. Blak, E.M. Yoshimura, L.V.d.A. Scalvi, R.M.F. Scalvi,
395 Photo-Induced Thermally Stimulated Depolarization Current (TSDC) in Natural and
396 Synthetic Alexandrite (BeAl₂O₃: Cr³⁺), Materials Sciences and Applications, 7 (2016)
397 881-894.

398 [39] J.M. Kalita, M.L. Chithambo, Comprehensive kinetic analysis of
399 thermoluminescence peaks of α -Al₂O₃:C,Mg, Journal of Luminescence, 185 (2017) 72-
400 82.

401 [40] N.M. Trindade, A.S. Tabata, R.M.F. Scalvi, L.V.d.A. Scalvi, Temperature
402 Dependent Luminescence Spectra of Synthetic and Natural Alexandrite, Materials
403 Sciences and Applications, 2 (2011) 284-287.

404 [41] R.C. Powell, L. Xi, X. Gang, G.J. Quarles, J.C. Walling, Spectroscopic properties
405 of alexandrite crystals, Physical Review B, 32 (1985) 2788-2797.

406 [42] A.B. Suchocki, G.D. Gilliland, R.C. Powell, J.M. Bowen, J.C. Walling,
407 Spectroscopic properties of alexandrite crystals II, *Journal of Luminescence*, 37 (1987)
408 29-37.

409 [43] V. Lisitsyn, E. Polisadova, D. Valiev, Pulsed cathodoluminescence of calcite
410 crystals of various origins, *Inorganic Materials*, 48 (2012) 738-744.

411 [44] M. Kaiheriman, A. Maimaitinaisier, A. Rehiman, S. Aierken, Photoluminescence
412 properties of green and red luminescence from natural and heat-treated sodalite, *Physics*
413 and *Chemistry of Minerals*, 41 (2014) 227-235.

414 [45] N.R.J. Poolton, L. Bøtter-Jensen, O. Johnsen, On the relationship between
415 luminescence excitation spectra and feldspar mineralogy, *Radiation Measurements*, 26
416 (1996) 93-101.

417 [46] M. Gaft, G. Panczer, L. Nagli, H. Yeates, Laser-induced time-resolved
418 luminescence of tugtupite, sodalite and hackmanite, *Physics and Chemistry of Minerals*,
419 36 (2009) 127-141.

420 [47] V. Correcher, J. Garcia-Guinea, Cathodo- and photoluminescence emission of a
421 natural Mg-Cr carbonate layered double hydroxide, *Applied Clay Science*, 161 (2018)
422 127-131.

423 [48] D. Pugh-Thomas, B.M. Walsh, M.C. Gupta, Spectroscopy of BeAl₂O₄:Cr³⁺ with
424 application to high-temperature sensing, *Appl. Opt.*, 49 (2010) 2891-2897.

425 [49] I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, U. Demirbas, Efficient and low-
426 threshold Alexandrite laser pumped by a single-mode diode, *Opt. Mater. Express*, 4
427 (2014) 776-789.

428

429

430

431 **TABLE CAPTIONS**

432 **Table I** - Normalized EDS results of natural alexandrite (sample I) according to
 433 stoichiometric proportions in wt.%, except for mica. The results for the alexandrite and
 434 mica phases correspond to the average of 39 and 9 different point measurements,
 435 respectively.

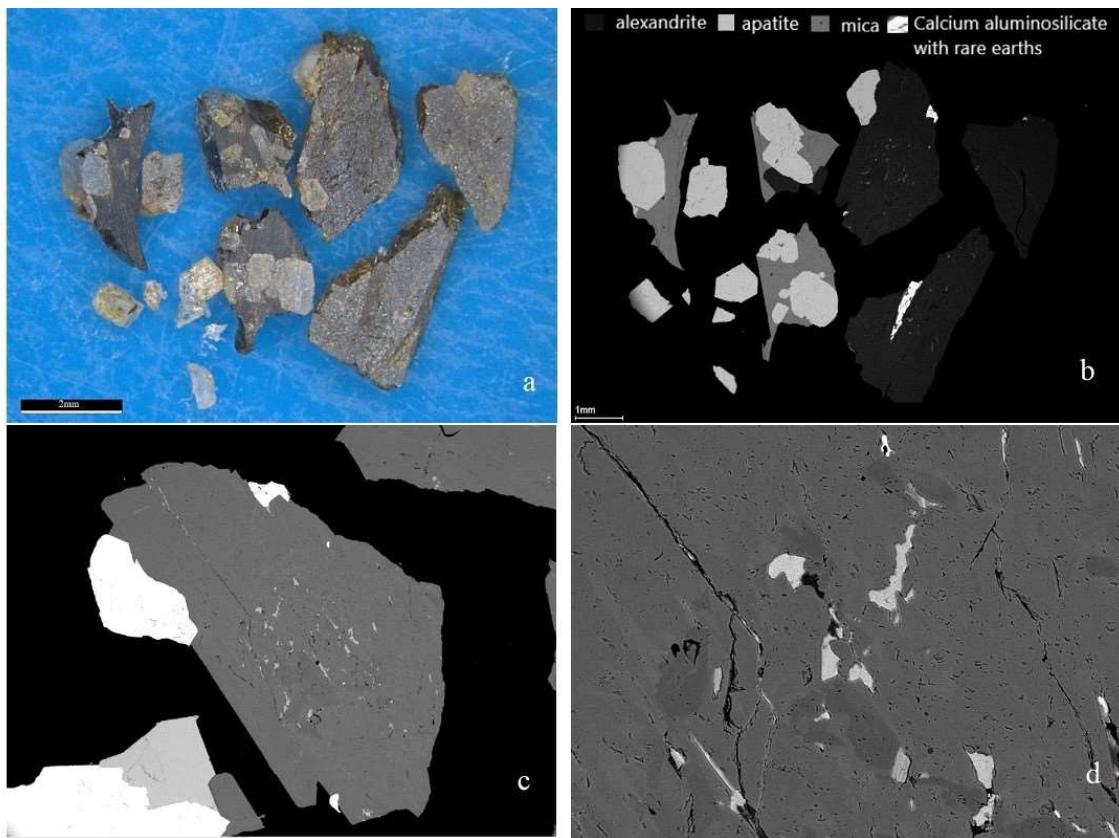
436 **Table I**

							Total				
Alexandrite	BeO		Al₂O₃		Cr₂O₃		Fe₂O₃				
	19.46		77.09		1.85		1.60				
							100.00				
Mica	MgO	Al₂O₃	Cr₂O₃	Fe₂O₃	SiO₂	MnO	Total				
	19.84	21.56	0.55	17.17	26.6	0.72	86.44				
Allanite	MgO	Al₂O₃	Fe₂O₃	SiO₂	MnO	CaO	Cl	La₂O₃	Ce₂O₃	Nd₂O₃	Total
	0.62	23.74	8.05	35.23	1.38	16.86	0.37	4.63	7.31	1.81	100.00
Apatite	CaO	SrO	P₂O₅		F		Total				
	52.90	1.20	42.30		3.60		100.00				
Fluorite	CaO	F				Total					
	51.30	48.70				100.00					

437

438

439 **Table II** - Trap depth energy and frequency factor values of TL peaks I to V obtained
 440 by different methods. See text for details.


441 **Table II**

Peak	Depth trap energy (eV)	
	<i>T_m</i> - dose method	Variable heating rate method
I	0.73 ± 0.06	0.66 ± 0.03
II	0.77 ± 0.02	0.78 ± 0.03
III	0.69 ± 0.02	0.91 ± 0.03
IV	1.07 ± 0.02	1.16 ± 0.04
V	1.04 ± 0.01	1.29 ± 0.07
Peak	Frequency factor s (s ⁻¹)	
	<i>T_m</i> - dose method	Variable heating rate method
I	(5.53 ± 5.26) x 10 ⁹	(1.76 ± 0.16) x 10 ⁸
II	(2.86 ± 2.58) x 10 ⁸	(2.95 ± 0.27) x 10 ⁸
III	(3.30 ± 1.69) x 10 ⁶	(1.18 ± 0.09) x 10 ⁹
IV	(1.18 ± 0.41) x 10 ⁹	(7.22 ± 0.60) x 10 ⁸
V	(3.86 ± 0.86) x 10 ⁷	(6.87 ± 0.42) x 10 ⁹

442

443 **FIGURE CAPTIONS**

444 **Figure 1** - (a) visual aspect of the fragments of sample I; (b) BSE image of the
445 fragments of sample I; BSE image of the fragment of sample I with the highest fraction
446 of alexandrite at (c) low and (d) high magnification.

447

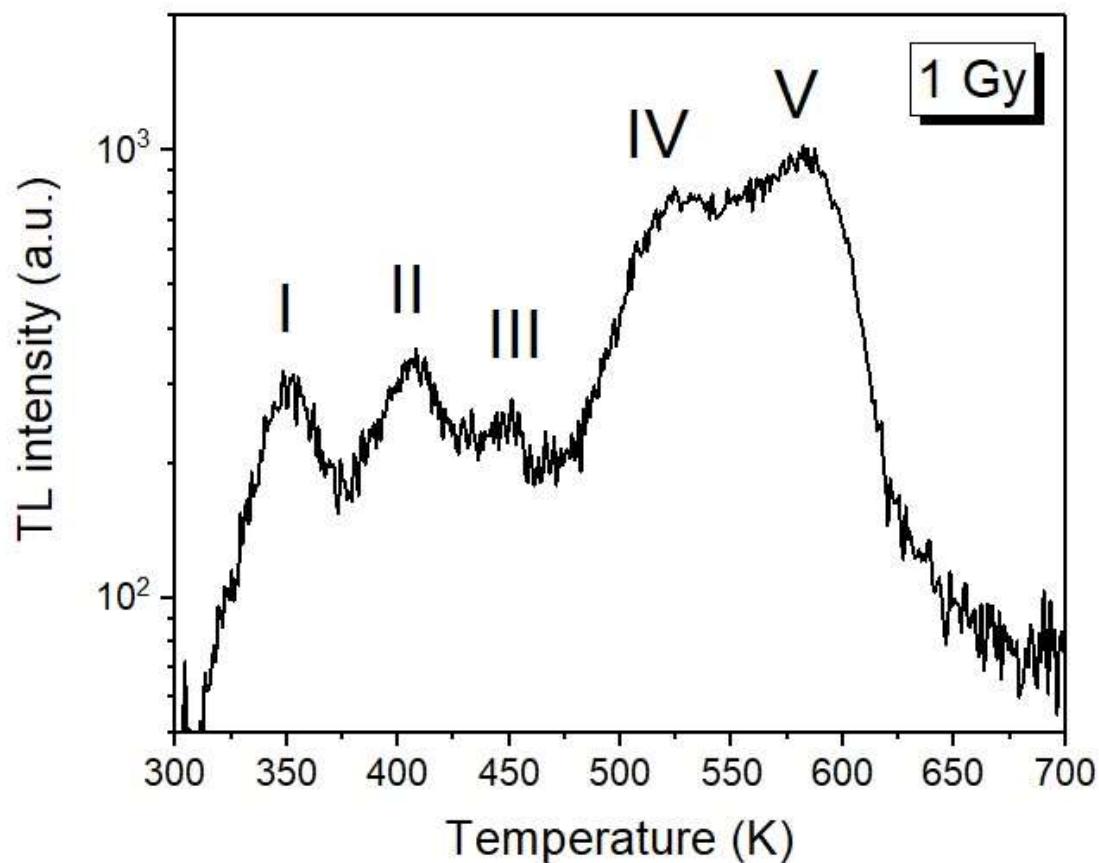
448

449

450

451

452


453

454

455

456 **Figure 2** - TL glow curve of natural alexandrite in semi-log scale obtained at 1 K/s

457 heating rate after a 1 Gy irradiation dose where the five TL peaks are identified.

458

459

460

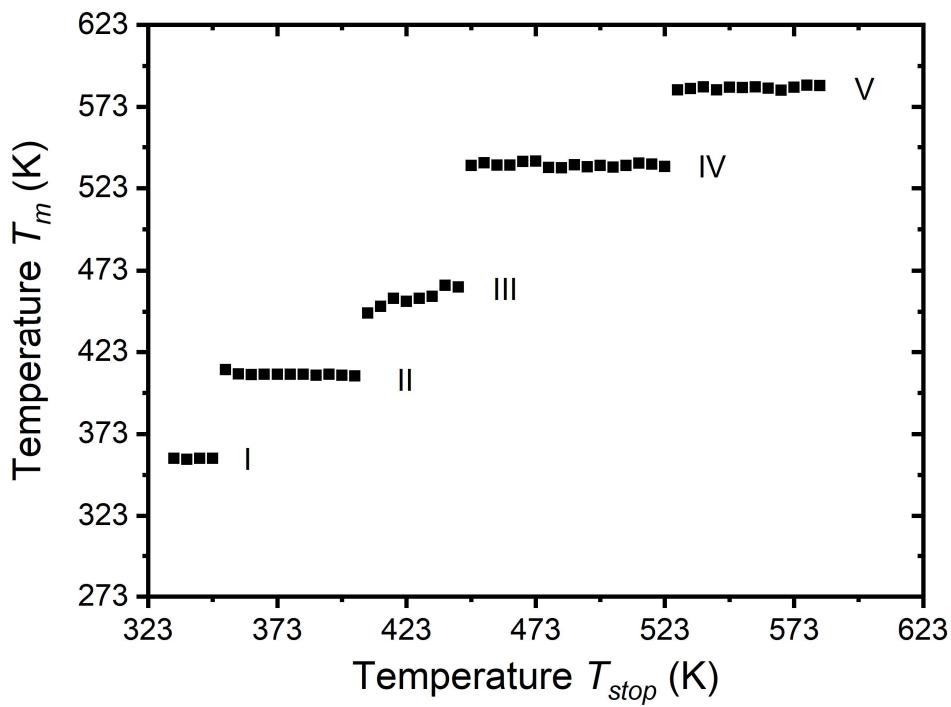
461

462

463

464

465


466

467

468

469

470 **Figure 3** - T_m - T_{stop} curve from natural alexandrite where five TL peaks are identified.

471

472

473

474

475

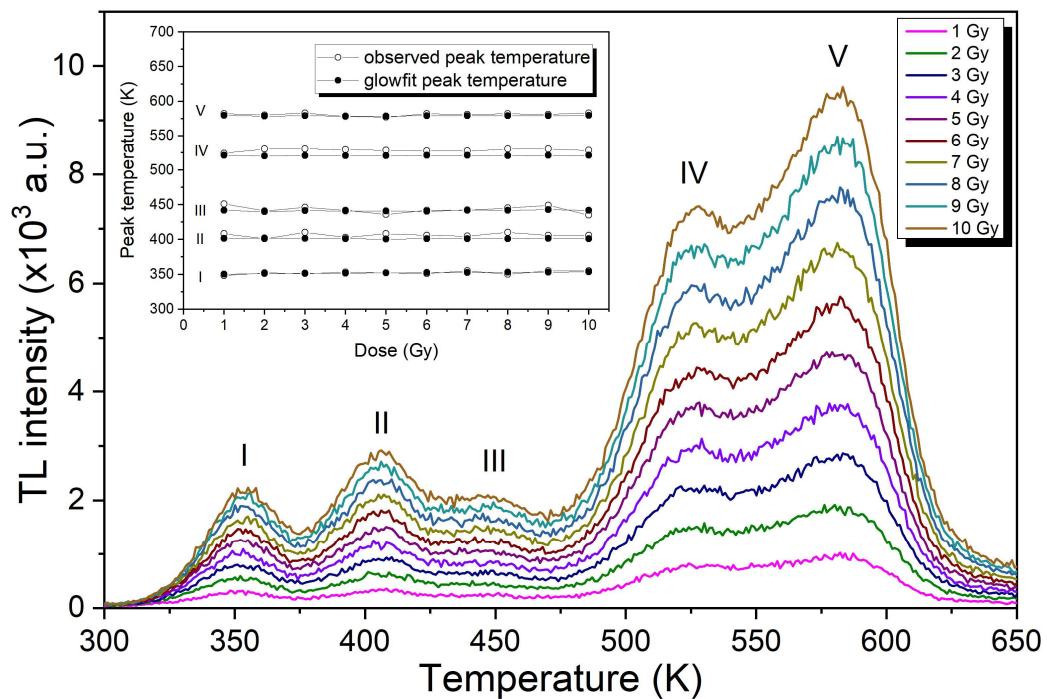
476

477

478

479

480


481

482

483

484

485 **Figure 4** - TL glow curve of natural alexandrite as a function of the beta irradiation
486 dose (1 K/s). The inset shows the position of each peak obtained by visual inspection
487 and through analysis using the GlowFit software.

488

489

490

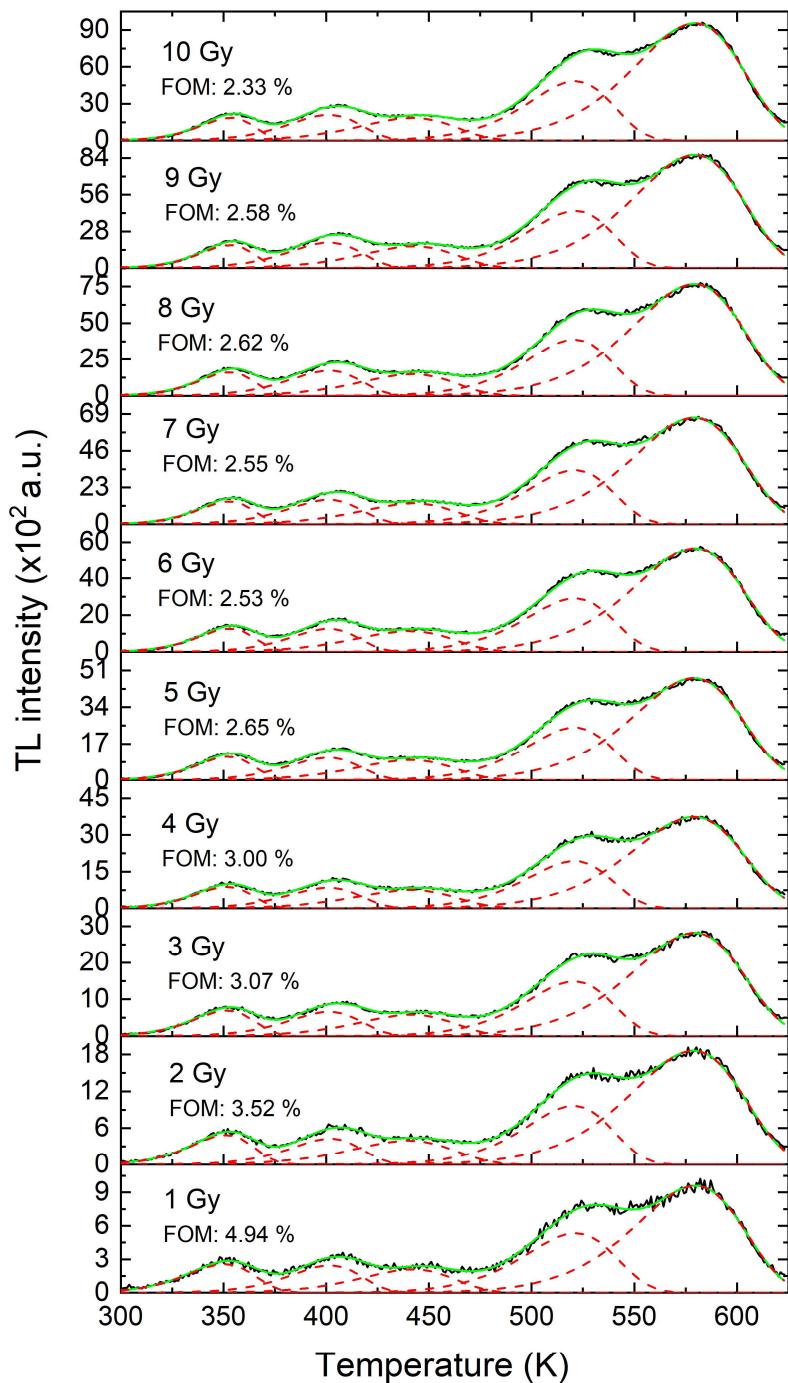
491

492

493

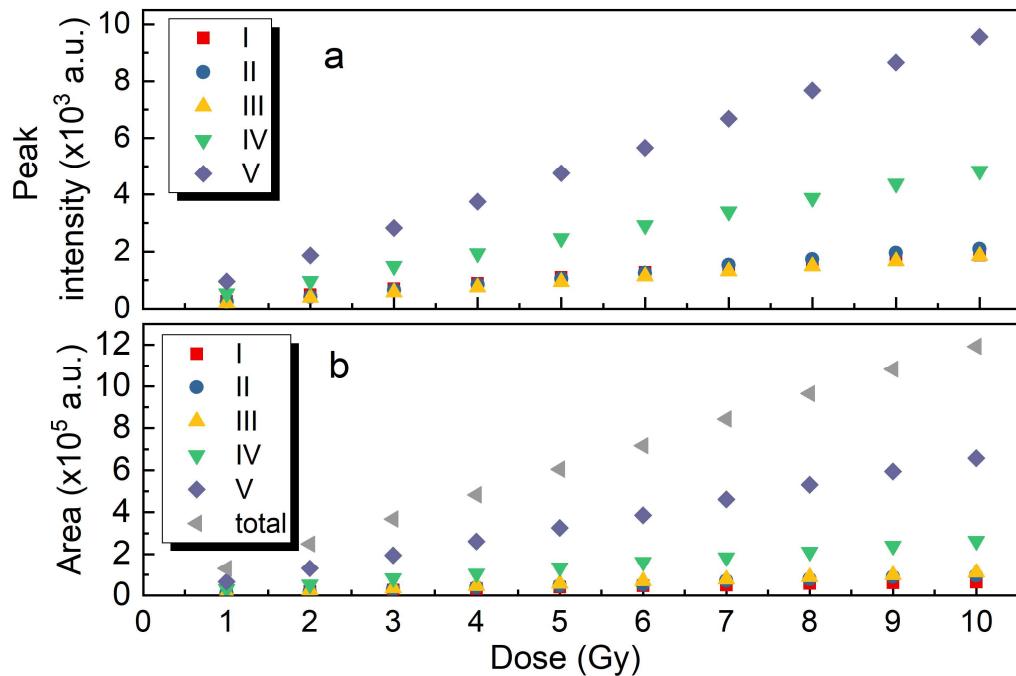
494

495

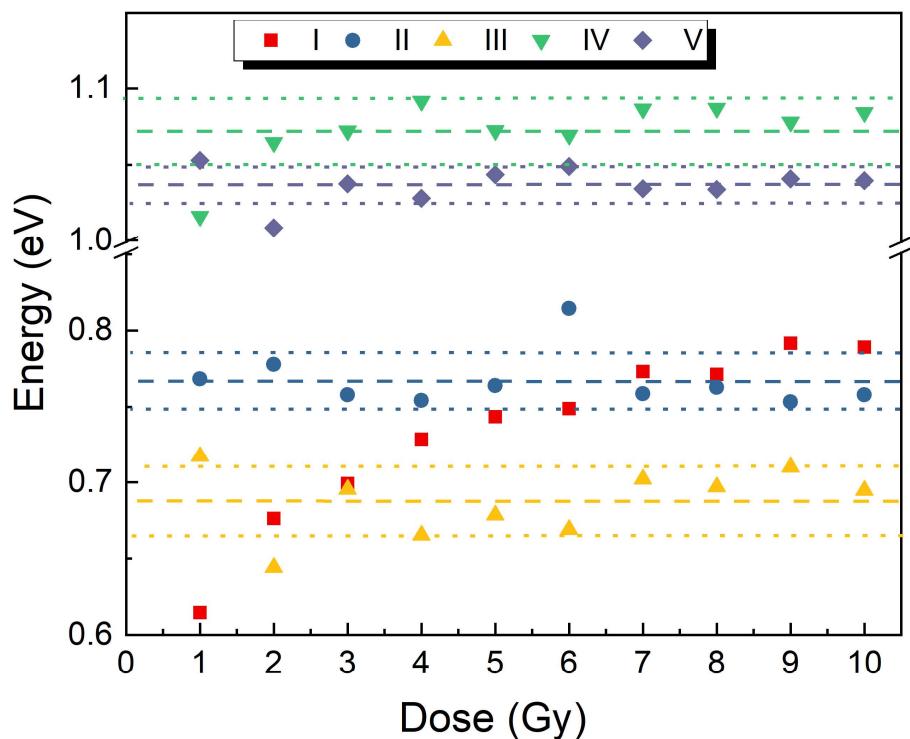

496

497

498


499

500 **Figure 5** - Best fitting of TL glow curves obtained with different irradiation doses, from
501 1 to 10 Gy.


502
503

504 **Figure 6** - (a) Peak intensity and (b) integrated intensity (area) of the five individual
505 bands used in the GlowFit best fit analysis of glow curves as a function of the
506 irradiation dose.

507
508
509
510
511
512
513
514
515
516
517

518 **Figure 7** - Average depth trap energy values obtained through the GlowFit best fit
519 analysis of TL glow curves as a function of the irradiation dose. The dashed lines mark
520 the average value and the dotted lines the limits of the standard deviation, with the
521 exception of peak I.

522

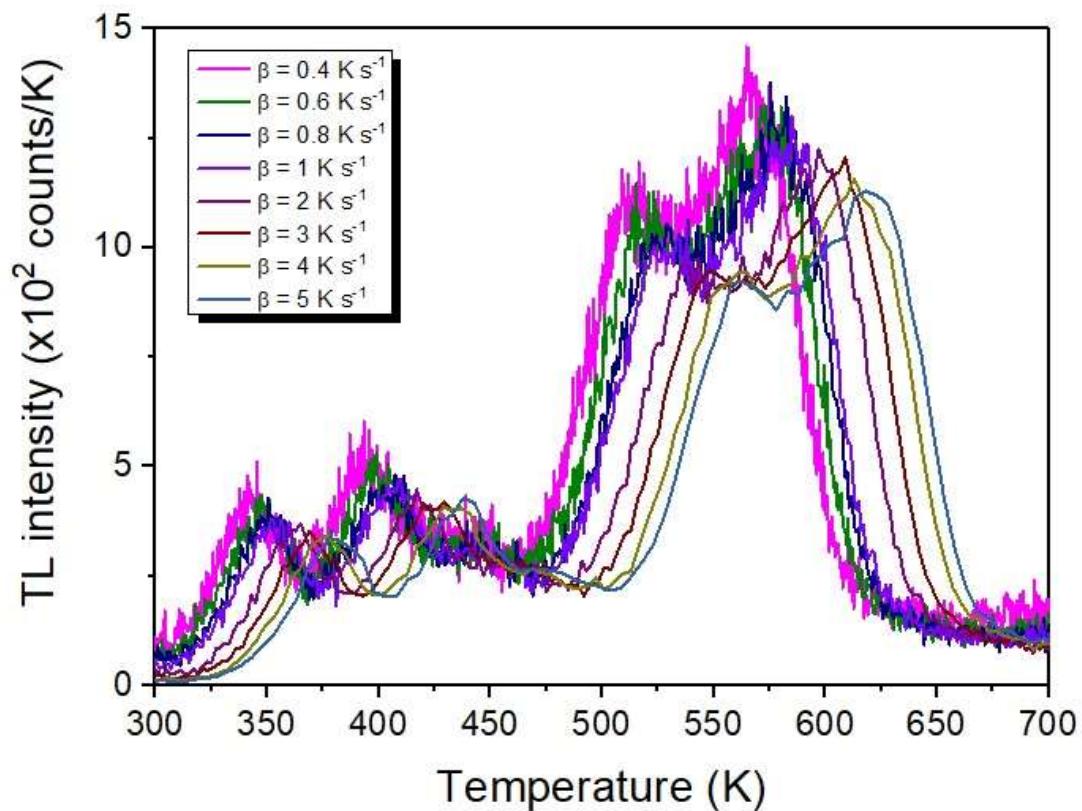
523

524

525

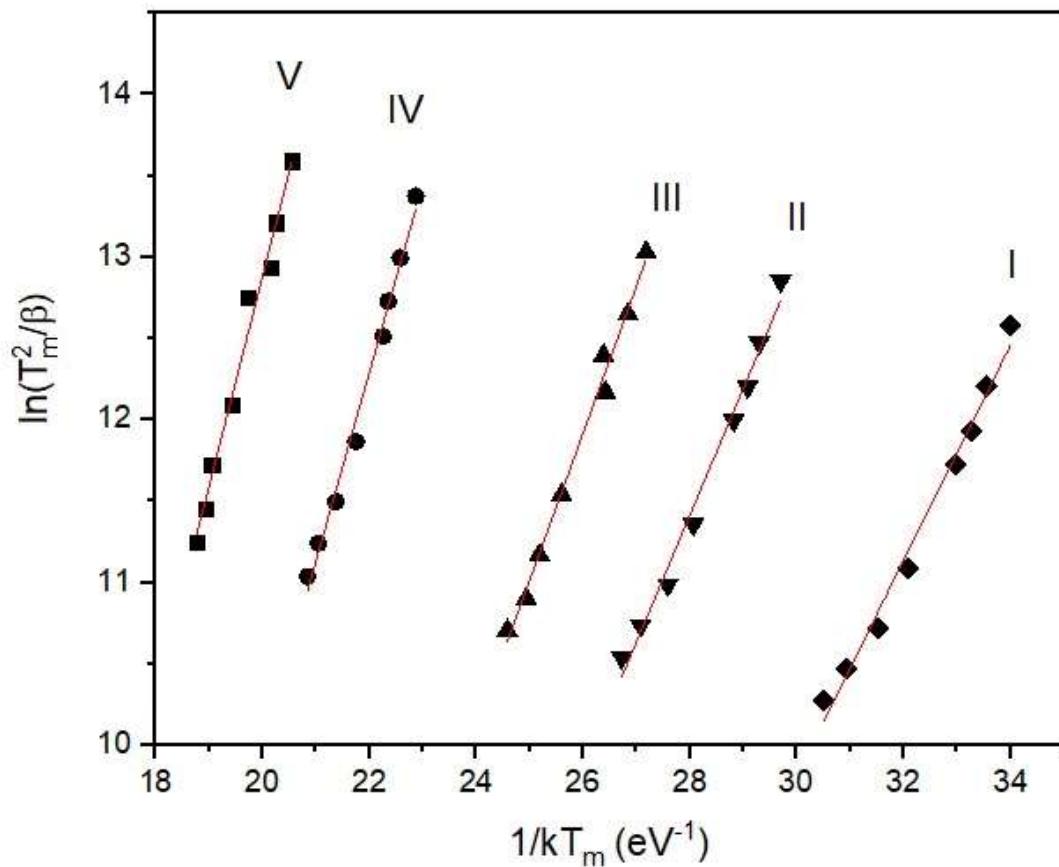
526

527


528

529

530


531

532 **Figure 8** - TL glow curves obtained at different heating rates after a beta irradiated dose
533 of 1 Gy.

534
535
536
537
538
539
540
541
542
543
544

545 **Figure 9** - Plot of $\ln(T_m^2/\beta)$ against $1/kT_m$ of TL peaks I to V, according to the variable
546 heating rate method. The red lines correspond to linear best fits.

547

548

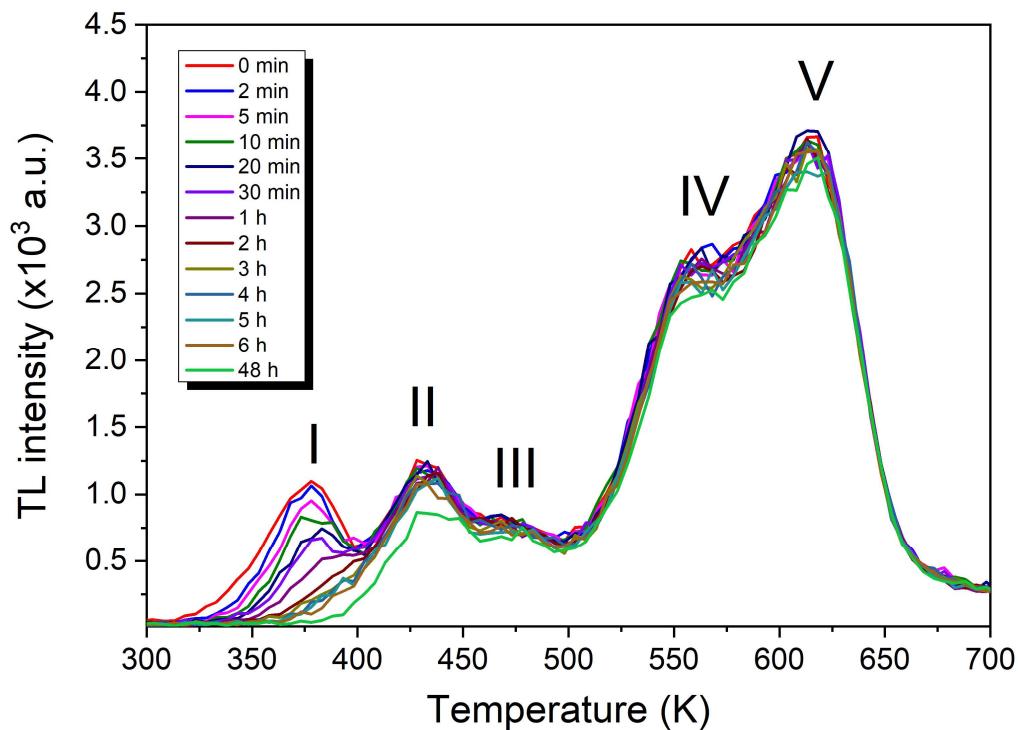
549

550

551

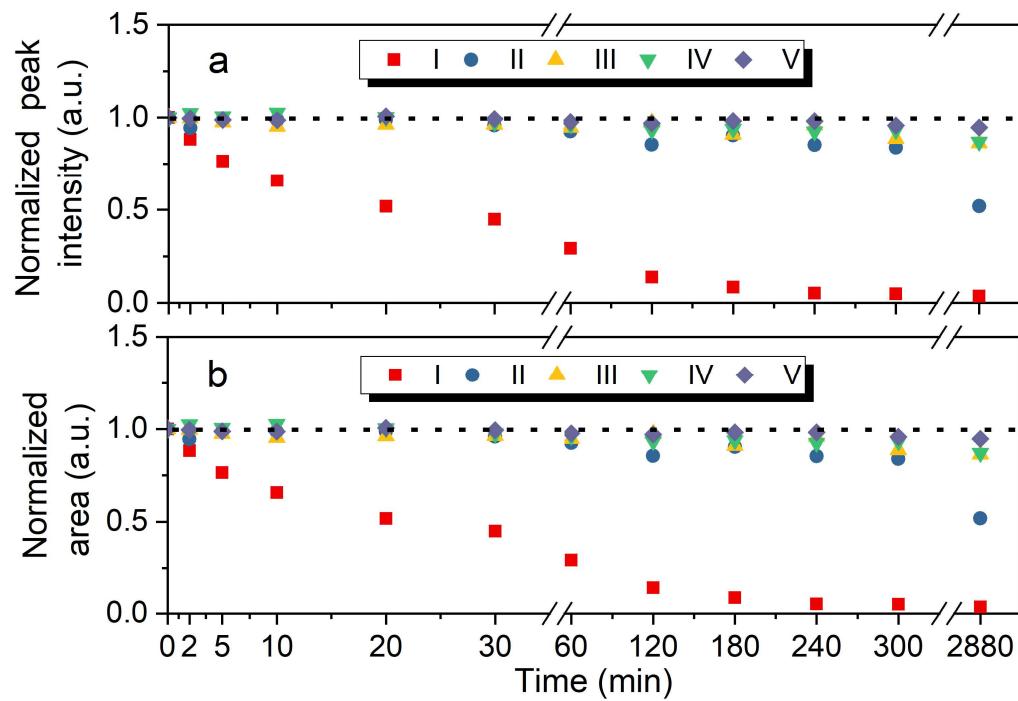
552

553

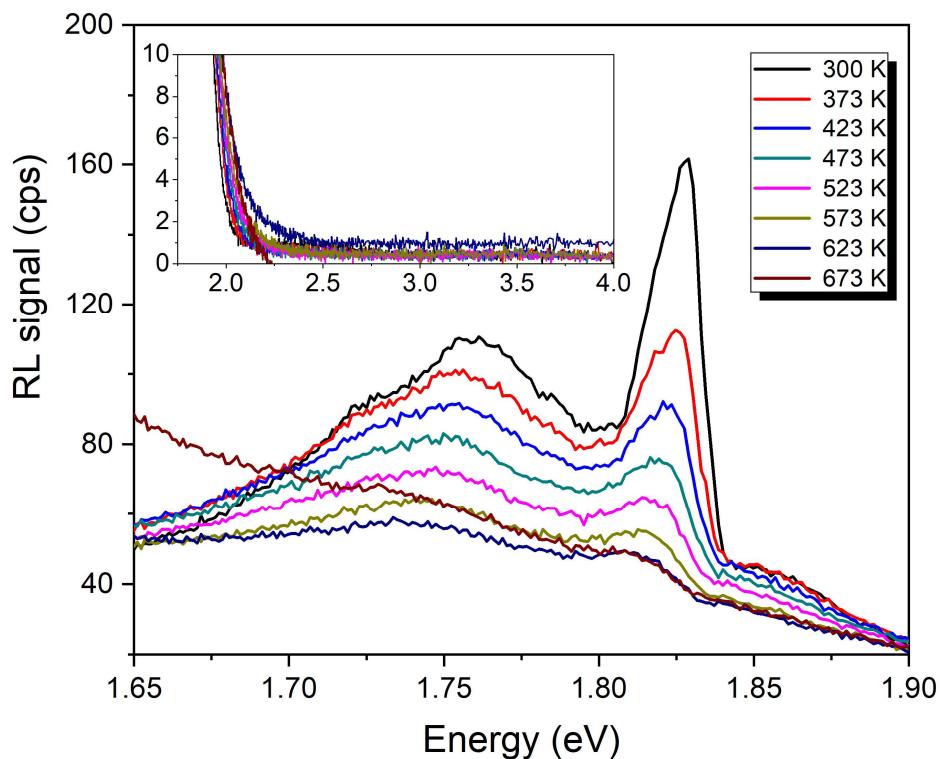

554

555

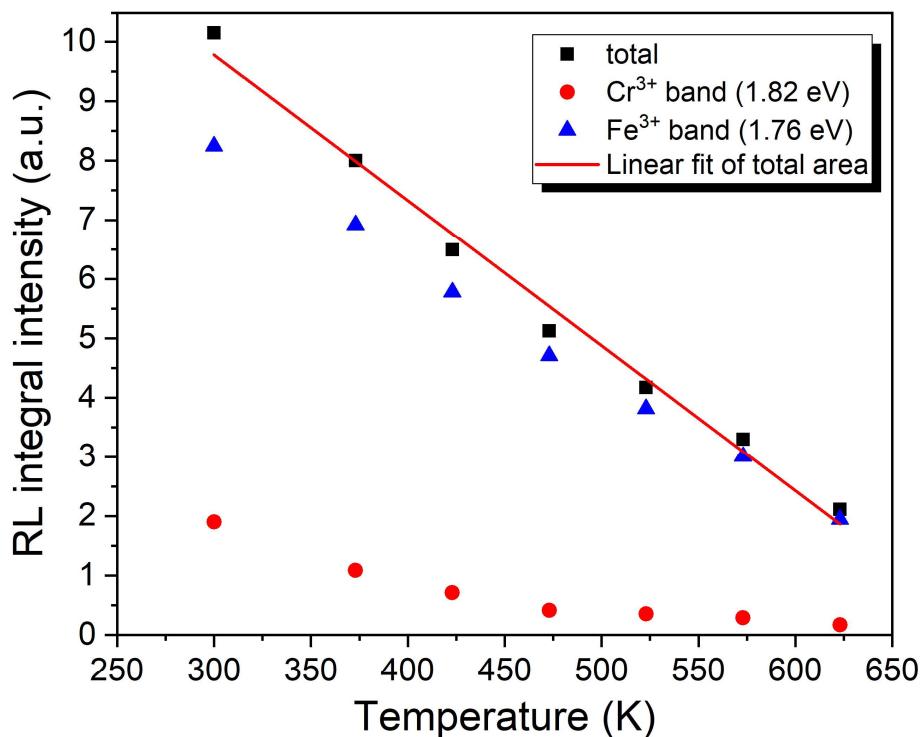
556


557

558 **Figure 10** - TL glow curves (1 K/s; 1 Gy) obtained after different times after irradiation
559 up to 48 hrs.


560
561
562
563
564
565
566
567
568
569
570
571

572 **Figure 11** - (a) Normalized peak intensity and (b) normalized area of the five individual
573 TL peaks obtained as a function of time after irradiation. The results were normalized to
574 the respective values obtained immediately after irradiation.


575
576
577
578
579
580
581
582
583
584
585

586 **Figure 12** - RL spectra of the natural alexandrite as a function of temperature. The inset
587 presents the spectra at higher photon energies, up to 4 eV; the emission around 2 eV
588 corresponds to the tail of the emission band shown in the main figure.

589
590
591
592
593
594
595
596
597
598
599

600 **Figure 13** - Total RL integrated intensity (squares) and integrated intensity of the 1.76
601 eV (triangles) and 1.82 eV (circles) individual emission bands related to the impurities
602 as a function of the temperature. The red line corresponds to the linear best fit of the
603 total RL integrated intensity ($R^2 = 0.99$).

604
605
606
607
608
609
610